Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445347

RESUMEN

Clostridium collagenase has provided superior clinical results in achieving digestion of immediate and accumulating devitalized collagen tissue. Recent studies suggest that debridement via Clostridium collagenase modulates a cellular response to foster an anti-inflammatory microenvironment milieu, allowing for a more coordinated healing response. In an effort to better understand its role in burn wounds, we evaluated Clostridium collagenase's ability to effectively minimize burn progression using the classic burn comb model in pigs. Following burn injury, wounds were treated with Clostridium collagenase or control vehicle daily and biopsied at various time points. Biopsies were evaluated for factors associated with progressing necrosis as well as inflammatory response associated with treatment. Data presented herein showed that Clostridium collagenase treatment prevented destruction of dermal collagen. Additionally, treatment with collagenase reduced necrosis (HMGB1) and apoptosis (CC3a) early in burn injuries, allowing for increased infiltration of cells and protecting tissue from conversion. Furthermore, early epidermal separation and epidermal loss with a clearly defined basement membrane was observed in the treated wounds. We also show that collagenase treatment provided an early and improved inflammatory response followed by faster resolution in neutrophils. In assessing the inflammatory response, collagenase-treated wounds exhibited significantly greater neutrophil influx at day 1, with macrophage recruitment throughout days 2 and 4. In further evaluation, macrophage polarization to MHC II and vascular network maintenance were significantly increased in collagenase-treated wounds, indicative of a pro-resolving macrophage environment. Taken together, these data validate the impact of clostridial collagenases in the pathophysiology of burn wounds and that they complement patient outcomes in the clinical scenario.


Asunto(s)
Quemaduras , Colagenasas/uso terapéutico , Desbridamiento/métodos , Cicatrización de Heridas/efectos de los fármacos , Animales , Quemaduras/tratamiento farmacológico , Quemaduras/patología , Clostridium/enzimología , Colagenasas/farmacología , Modelos Animales de Enfermedad , Femenino , Necrosis/tratamiento farmacológico , Necrosis/etiología , Piel/efectos de los fármacos , Piel/patología , Porcinos
2.
ACS Catal ; 8(12): 11704-11715, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31263628

RESUMEN

Flavo-diiron proteins (FDPs) are widespread in anaerobic bacteria, archaea, and protozoa, where they serve as the terminal components of dioxygen and nitric oxide reductive scavenging pathways. FDPs contain an N,O-ligated diiron site adjacent to a flavin mononucleotide (FMN) cofactor. The diiron site is structurally similar to those in hemerythrin, ribonucleotide reductase, and methane monooxygenase. However, only FDPs turn over NO to N2O at significant rates and yields. Previous studies revealed sequential binding of two NO molecules to the diferrous site, forming mono- and dinitrosyl intermediates leading to N2O formation. In the present work, these mono- and dinitrosyl intermediates have been characterized by EPR and Mössbauer spectroscopies and DFT calculations. Our results show that the iron proximal to the cofactor binds the first NO to form the diiron mononitrosyl complex, implying the iron distal to the FMN binds the second NO to form the diiron dinitrosyl intermediate. The exchange-coupling constants, J (H = JS1·S2), were found to differ substantially, +17 cm-1 for the diiron mononitrosyl and +60 cm-1 for the diiron dinitrosyl. Notwithstanding this large difference, our findings indicate retention of at least one hydroxo bridge throughout the NOR catalytic cycle. The Mossbauer hyperfine parameters and DFT calculations confirmed a semibridging NO- ligand in the mononitrosyl intermediate that lowers the exchange parameter. The DFT calculations on the dinitrosyl intermediate suggest a contribution to J from direct exchange between the S = 1 spins on the NO- ligands, which could initiate N-N bond formation. Our results provide insight into why FDPs are the only known nonheme diiron enzymes that competently turn over NO to N2O.

3.
J Biol Inorg Chem ; 20(3): 603-13, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25700637

RESUMEN

Flavodiiron proteins (FDPs) contain a unique active site consisting of a non-heme diiron carboxylate site proximal to a flavin mononucleotide (FMN). FDPs serve as the terminal components for reductive scavenging of dioxygen (to water) or nitric oxide (to nitrous oxide), which combats oxidative or nitrosative stress in many bacteria. Characterizations of FDPs from spirochetes or from any oral microbes have not been previously reported. Here, we report characterization of an FDP from the anaerobic spirochete, Treponema (T.) denticola, which is associated with chronic periodontitis. The isolated T. denticola FDP exhibited efficient four-electron dioxygen reductase activity and lower but significant anaerobic nitric oxide reductase activity. A mutant T. denticola strain containing the inactivated FDP-encoding gene was significantly more air-sensitive than the wild-type strain. Single turnover reactions of the four-electron-reduced FDP (FMNH2-Fe(II)Fe(II)) (FDPred) with O2 monitored on the milliseconds to seconds time scale indicated initial rapid formation of a spectral feature consistent with a cis-µ-1,2-peroxo-diferric intermediate, which triggered two-electron oxidation of FMNH2. Reaction of FDPred with NO showed apparent cooperativity between binding of the first and second NO to the diferrous site. The resulting diferrous dinitrosyl complex triggered two-electron oxidation of the FMNH2. Our cumulative results on this and other FDPs indicate that smooth two-electron FMNH2 oxidation triggered by the FDPred/substrate complex and overall four-electron oxidation of FDPred to FDPox constitutes a mechanistic paradigm for both dioxygen and nitric oxide reductase activities of FDPs. Four-electron reductive O2 scavenging by FDPs could contribute to oxidative stress protection in many other oral bacteria.


Asunto(s)
Flavoproteínas/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Treponema denticola/metabolismo , Catálisis , Dominio Catalítico , Modelos Moleculares , Transducción de Señal
4.
Biochemistry ; 53(12): 2007-16, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24490904

RESUMEN

Flavin-containing monooxygenases (FMOs) catalyze the oxygenation of diverse organic molecules using O2, NADPH, and the flavin adenine dinucleotide (FAD) cofactor. The fungal FMO SidA initiates peptidic siderophore biosynthesis via the highly selective hydroxylation of L-ornithine, while the related amino acid L-lysine is a potent effector of reaction uncoupling to generate H2O2. We hypothesized that protonation states could critically influence both substrate-selective hydroxylation and H2O2 release, and therefore undertook a study of SidA's pH-dependent reaction kinetics. Consistent with other FMOs that stabilize a C4a-OO(H) intermediate, SidA's reductive half reaction is pH independent. The rate constant for the formation of the reactive C4a-OO(H) intermediate from reduced SidA and O2 is likewise independent of pH. However, the rate constants for C4a-OO(H) reactions, either to eliminate H2O2 or to hydroxylate L-Orn, were strongly pH-dependent and influenced by the nature of the bound amino acid. Solvent kinetic isotope effects of 6.6 ± 0.3 and 1.9 ± 0.2 were measured for the C4a-OOH/H2O2 conversion in the presence and absence of L-Lys, respectively. A model is proposed in which L-Lys accelerates H2O2 release via an acid-base mechanism and where side-chain position determines whether H2O2 or the hydroxylation product is observed.


Asunto(s)
Aspergillus fumigatus/enzimología , Oxigenasas/química , Oxigenasas/metabolismo , Sideróforos/química , Sideróforos/metabolismo , Concentración de Iones de Hidrógeno , Lisina/química , Modelos Químicos , Protones
5.
J Am Chem Soc ; 133(32): 12338-41, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21774554

RESUMEN

Flavin-dependent monooxygenases (FMOs) are involved in important biosynthetic pathways in diverse organisms, including production of the siderophores used for the import and storage of essential iron in serious pathogens. We have shown that the FMO from Aspergillus fumigatus, an ornithine monooxygenase (Af-OMO), is mechanistically similar to its well-studied distant homologues from mammalian liver. The latter are highly promiscuous in their choice of substrates, while Af-OMO is unusually specific. This presents a puzzle: how do Af-OMO and other FMOs of the biosynthetic classes achieve such specificity? We have discovered substantial enhancement in the rate of O(2) activation in Af-OMO in the presence of L-arginine, which acts as a small molecule regulator. Such protein-level regulation could help explain how this and related biosynthetic FMOs manage to couple O(2) activation and substrate hydroxylation to each other and to the appropriate cellular conditions. Given the essentiality of Fe to Af and the avirulence of the Af-OMO gene knock out, inhibitors of Af-OMO are likely to be drug targets against this medically intractable pathogen.


Asunto(s)
Aspergillus fumigatus/enzimología , Flavinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxígeno/metabolismo , Animales , Activación Enzimática
6.
J Biol Chem ; 285(40): 30375-88, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20650894

RESUMEN

Many siderophores used for the uptake and intracellular storage of essential iron contain hydroxamate chelating groups. Their biosyntheses are typically initiated by hydroxylation of the primary amine side chains of l-ornithine or l-lysine. This reaction is catalyzed by members of a widespread family of FAD-dependent monooxygenases. Here the kinetic mechanism for a representative family member has been extensively characterized by steady state and transient kinetic methods, using heterologously expressed N(5)-l-ornithine monooxygenase from the pathogenic fungus Aspergillus fumigatus. Spectroscopic data and kinetic analyses suggest a model in which a molecule of hydroxylatable substrate serves as an activator for the reaction of the reduced flavin and O(2). The rate acceleration is only ∼5-fold, a mild effect of substrate on formation of the C4a-hydroperoxide that does not influence the overall rate of turnover. The effect is also observed with the bacterial ornithine monooxygenase PvdA. The C4a-hydroperoxide is stabilized in the absence of hydroxylatable substrate by the presence of bound NADP(+) (t(½) = 33 min, 25 °C, pH 8). NADP(+) therefore is a likely regulator of O(2) and substrate reactivity in the siderophore-associated monooxygenases. Aside from the activating effect of the hydroxylatable substrate, the siderophore-associated monooxygenases share a kinetic mechanism with the hepatic microsomal flavin monooxygenases and bacterial Baeyer-Villiger monooxygenases, with which they share only moderate sequence homology and from which they are distinguished by their acute substrate specificity. The remarkable specificity of the N(5)-l-ornithine monooxygenase-catalyzed reaction suggests added means of reaction control beyond those documented in related well characterized flavoenzymes.


Asunto(s)
Aspergillus fumigatus/enzimología , Proteínas Fúngicas/química , Oxigenasas de Función Mixta/química , Modelos Químicos , Sideróforos/química , Flavinas/química , Flavinas/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Oxigenasas de Función Mixta/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Sideróforos/metabolismo
7.
Biometals ; 22(4): 583-93, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19350396

RESUMEN

Iron is essential for the survival of most organisms. Microbial iron acquisition depends on multiple, sometimes complex steps, many of which are not shared by higher eukaryotes. Depriving pathogenic microbes of iron is therefore a potential antimicrobial strategy. The following minireview briefly describes general elements in microbial iron uptake pathways and summarizes some of the current work aiming at their medicinal inhibition.


Asunto(s)
Hierro/metabolismo , Antiinfecciosos/farmacología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Estructura Molecular , Sideróforos/metabolismo , Sideróforos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...